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Abstract. A one-dimensional discrete Stark Hamiltonian with a continuous electric field is
constructed by extension theory methods. In the absence of an impurity the model is proved to
be exactly solvable, the spectrum is shown to be simple and continuous, filling the real axis;
the eigenfunctions, the resolvent and the spectral measure are constructed explicitly. For this
(unperturbed) system the resonance spectrum is shown to be empty.

The model considering an impurity in a single node is also constructed using the operator
extension theory methods. The spectral analysis is performed and the dispersion equation for
the resolvent singularities is obtained. The resonance spectrum is shown to contain an infinite
discrete set of resonances. One-to-one correspondence of the constructed Hamiltonian to some
Lee–Friedrichs model is established.

1. Introduction

A one-dimensional Stark-type Hamiltonian on a line has been studied by many authors
[1–12]. Most attention has been paid to the resonance structure of this system. The key
ingredient of the models studied in [1–12] is the absolutely continuous spectrum filling the
whole real axis. It provides the possibility of applying the powerful methods of scattering
theory to the study of the spectrum of resonances.

However, it is well known [13, 14] that a discrete one-dimensional Stark Hamiltonian
on a lattice has a discrete spectrum only. This means that there are no ‘scattering states’
even for an unperturbed system. This prevents the study of the spectrum of resonances
caused by the perturbation of an ideal crystal lattice.

In the present paper we study a model for the motion of an electron on a one-dimensional
lattice in a homogeneous electric field and electron resonance scattering by an impurity
treated as a perturbation. The main idea of our approach is to put the dynamical variables
and equation of motion on a spatial lattice, whereas the absolutely continuous spectrum is
kept intact.

In order to construct a discrete Stark Hamiltonian with an absolutely continuous
spectrum we treat the kinetic energy of an electron in a lattice as the operator of the
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second difference, whereas the electric field is considered as continuous, filling the intersite
intervals. As is shown in the present paper, the discrete Stark operator with continuous
electric field proposed here has an absolutely continuous spectrum in contrast to the discrete
Stark operator with electric field located at the sites of the lattice [13, 14]. In our opinion
the discrete Stark operator with continuous electric field seems to be more natural from the
physical point of view, at least because the concept of a field needs continuity by itself. On
the other hand, the suggested model seems also to be more sound from the spectral point of
view because of the presence of a continuous spectrum, and as a consequence the presence
of the propagating electronic waves in the system.

Treating such a Hamiltonian as an unperturbed operator, we construct the perturbed
Hamiltonian which describes the interaction of the Stark electron with an impurity.

In the present paper we consider the single impurity localized at the site with the number
n = 0. We ‘switch on’ the interaction between the Stark electron and the impurity by the
extension theory methods [17, 18]. In contrast to the ordinary delta-like interaction our
approach allows one to take into account the impurity internal degrees of freedom. The
advantage is that the perturbed Stark operator describing the resonance scattering by impurity
leads to the exactly solvable model having at the same time a reach set of resonances. We
calculate the location of resonances by perturbation theory methods in a weak coupling
limit.

Let us emphasize that this paper does not consider the Wannier–Stark problem, because
in our model the kinetic energy operator is a difference operator.

We reduce the proposed model to some Lee–Friedrichs model [15, 16] and treat the latter
as a particular case of models based on the extension theory [17, 18]. This reduction can
be useful when studying the transition to chaos and the problem of intrinsic irreversibility
[19] for discrete Stark Hamiltonians.

The paper is organized as follows. In section 2 we construct the discrete Stark
Hamiltonian with continuous electric field and perform its spectral analysis explicitly. In
section 3, by means of the extension theory methods, we construct the perturbed Hamiltonian
describing the interaction of the Stark electron with an impurity. In the same section
we make the analytic continuation of the resolvent bilinear form and in terms of this
continuation calculate the spectrum of resonances. In section 4 we reduce our model to
the Friedrichs–Lee model and discuss on this basis the applicability of the generalized
spectral decompositions, in connection with the intrinsic irreversibility problem and chaotic
regimes.

2. Unperturbed Hamiltonian

In this section we construct a Hamiltonian describing a chain of sites embedded in a
continuous electric field and study its spectral properties.

Let us consider the discrete Stark operatorHd acting in the Hilbert spaceHd = l2,

(Hd9)n = − 1

(2πa)2
(9n−1+9n+1)+ 2πεan9n (1)

and the multiplication operator

Hc = εay y ∈ (−π, π) (2)

acting in the Hilbert spaceHc = L2(−πa, πa). Here 2πa is the intersite distance and
ε > 0 is the electric field parameter.
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We introduce the Hamiltonian describing a chain of sites in an electric field in the form

H = Hd × Ic + Id ×Hc. (3)

HereHd andHc are given by equations (1) and (2), respectively,Id andIc are the identity
operators inHd andHc. The notation× stands for the operator tensor product. The operator
H acts in the space

H = l2(Z;L2[−π, π)). (4)

One can note that the potential

U = 2πaεn× Ic + Id × εay = εa(2πn+ y)
is a continuous electric field potential on a line. Indeed, any pointν ∈ R can be parametrized
by the site numbern ∈ Z and the point of the intervaly ∈ [−π, π) : ν = a(2πn+ y). So
in contrast to the discrete Stark HamiltonianHd , our model describes a chain of sites in a
continuous electric field.

In what follows we call the operatorH the unperturbed operator. The perturbation will
be introduced in the next section as the impurity located in one of the sites.

In order to describe spectral properties of the unperturbed operatorH we need the
following notation. By angular brackets,〈∗, ∗〉A, we denote the inner product in a Hilbert
spaceA and by square brackets, [α], the integer part of a real numberα. The integer-valued
functionM(λ) is defined as

M(λ)
def=
[

λ

2πaε
+ 1

2

]
λ ∈ R.

Jν(z) are the Bessel functions of first type. The components of the vectorĴ (m) ∈ l2 are
defined as follows:(Ĵ (m))n = Jn−m(2), where2 = −(4π3a3ε)−1. The Heaviside step
function is denoted byθ(x).

Lemma 1. The spectrumσ(H) of the operatorH is simple, absolutely continuous and fills
the real axisR. The wavefunctions are distributions and are given by

9n(y, λ) = Jn−M(λ)(2)δ(εay − λ+ 2πM(λ)εa). (5)

The spectral family (resolution of the identity) of the operatorH are projections in the
spaceH of the form

Eλ(y) =
∞∑

m=−∞
〈∗, Ĵ (m)〉l2Ĵ (m)θ(λ− 2πmεa − εay). (6)

Proof. The structure of the operatorH leads to the separation of variables and therefore
the spectral analysis ofH is reduced to the spectral analysis of the operatorsHd andHc.

Let us use the Fourier transform in the spacel2, F : l2→ L2(−π, π):

(Ff )(q) =
∞∑

n=−∞
einqfn.

In the Fourier representation the operatorHd turns into the operator

FHdF
−1 = −2πaεi

d

dq
− 2

(2πa)2
cosq

acting inL2(−π, π) whose domain in the Sobolev spaceH 1
2 [−π, π) is determined by the

periodicity condition(Ff )(−π) = (Ff )(π). Solving the eigenvalue problem

(FHdF
−1− λ)(Ff )(q) = 0
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one can see that the spectrum of the operatorFHdF
−1 is discrete and the eigenvalues are

λm = 2πaεm m = 0,±1,±2, . . .

whereas the correspondent eigenfunctions are

(Ff )(m)(q) = exp{i2 sinq + imq} 2 = −(4π3a3ε)−1.

Using the inverse Fourier transform one obtains

f (m)n = (2π)−1
∫ π

−π
(Ff )(m)(q) e−inq dq = Jn−m(2).

Here we have used the integral representation [29] of the Bessel functionJν(2).
Now consider the operatorHc in the Hilbert spaceL2(−π, π). Its spectrum is

absolutely continuous and fills the intervalζ ∈ [−πεa, πεa]. The correspondent continuous
spectrum wavefunctions are distributions and have the form of delta functionsψζ (y) =
δ(y − (εa)−1ζ ).

Due to the separation of variables the spectrum of the operatorH is the algebraic sum
of the spectra of the operatorsHd andHc:

σ(h) = {z = z1+ z2 : z1 ∈ σ(Hd), z2 ∈ σ(Hc)}.
Let us note that the length of the single spectral band of the operatorHc exactly coincides
with the distance between the neighbouring eigenvalues of the operatorHd . Thus the
spectrum of the operatorH fills the real axis.

Any point λ ∈ R from the spectrum ofH can be represented in the form

λ = λm + ν m ∈ Z, ν ∈ [−πaε, πaε).
This representation corresponds to the energy distribution between the ‘lattice’ and ‘field’
subsystems determined by the operatorsHd and Hc, respectively. Asλm = 2πaεm,
m = 0,±1,±2, . . . , the ‘mode number’m for a given energyλ is calculated as an integer-
valued function

m = M(λ) =
[

λ

2πaε
+ 1

2

]
.

Due to the separation of variables, the wavefunctions9n(y) of the operatorH are products
of the corresponding eigenfunctions of the operatorsHd andHc and hence have the form
(5).

Now we construct the spectral familyEλ(y) of the operatorH and show that the
quadratic form

η(λ) = 〈Eλ8,8〉H (7)

is an absolutely continuous function ofλ for any8 ∈ H. First, let us show that the resolvent
R(z) = (H − z)−1 is an operator-valued matrixR(z) = {Rnn′(z)} with the entries

Rnn′(y, z) =
∞∑

m=−∞

Jn−m(2)Jn′−m(2)
λm + εay − z (8)

which acts as a multiplication operator with respect to the variabley. Indeed, the resolvent
Rd(z) = (Hd − z)−1 of the operatorHd in the spacel2 obviously has matrix elements

(Rd(z))nn′ =
∞∑

m=−∞

Jn−m(2)Jn′−m(2)
λm − z (9)
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where λm = 2πmεa are the eigenvalues of the operatorHd . The resolventRc(z) =
(Hc − z)−1 of the operatorHc in the spaceL2(−π, π) is a multiplication operator

Rc(z)∗ = 1

εay − z ∗ . (10)

Due to separation of variables the resolventR(z) = (H − zI)−1 can be calculated as a
contour integral

R(z) = (2π i)−1
∮
γ

Rc(ζ )Rd(z − ζ ) dζ

= (2π i)−1
∫ εaπ

−εaπ
Rd(z − ζ )[Rc(ζ + i0)− Rc(ζ − i0)] dζ

where the contourγ encircles the spectrum of the operatorHc. On use of equations (9) and
(10) the straightforward calculations give

Rnn′(y, z) = (2π i)−1
∫ εaπ

−εaπ

∞∑
m=−∞

Jn−m(2)Jn′−m(2)
λm − z + ζ

(
1

εay − ζ − i0
− 1

εay − ζ + i0

)
dζ

=
∞∑

m=−∞
Jn−m(2)Jn′−m(2)

∫ εaπ

−εaπ

δ(εay − ζ )
λm − z + ζ dζ =

∞∑
m=−∞

Jn−m(2)Jn′−m(2)
λm − z + εay

which coincides with equation (8).
Resolution of the identityEλ of any self-adjoint operator is related to the resolvent as

follows [20]. If (α, β) ⊂ R is an open interval, then in the strong operator topology

E(α,β) = lim
δ↓0

lim
ε↓0

∫ β−δ

α+δ
(R(λ+ iε)− R(λ− iε)) dλ.

Applying this formula to the resolventR(z) given by equation (8) one obtains resolution of
the identity of the operatorH in the form (6).

By means of equation (6) the functionη(λ) given by equation (7) takes the form

η(λ) =
∞∑

p=−∞

∫ π

−π
〈8, Ĵ (p)〉l2 〈Ĵ (p), 8〉l2 θ(λ− λp − εay) dy.

It is clear that ifλ ∈ [λm − πεa, λm + πεa], m ∈ Z, then

η(λ) =
m−1∑
p=−∞

∫ π

−π
〈8, Ĵ (p)〉l2 〈Ĵ (p), 8〉l2 dy +

∫ (λ−λm)/εa

−π
〈8, Ĵ (m)〉l2 〈Ĵ (m),8〉l2 dy.

Consequently,η(λm + πεa − 0) = η(λm+1 − πεa + 0). Hence the functionη(λ) and,
consequently, the spectrum of the operatorH , is absolutely continuous.

The lemma is proved. �

3. Perturbed Hamiltonian

In this section we assume that the chain of sites considered embedded in the electric field has
an impurity. Namely we suppose that the electron dynamics governed by the Hamiltonian
H is perturbed by the additional interaction between the electron and an impurity located at
the single site with the numbern = 0. We construct this interaction by means of extension
theory methods [17, 18]. Namely we suppose that the impurity has an internal structure.
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The dynamics of this internal structure is given by a self-adjoint operatorHi acting in an
auxiliary Hilbert spaceHi . Then following the extension theory ideology we consider the
extended space

Ĥ = l2(Z, L2(−π, π)⊕Hi ) = H⊕ l2(Z,Hi )
as the state space for the system with the interaction.

Here we make the simplest choiceHi = C. Then

Ĥ = H⊕ l2
and the self-adjoint operatorHi acting in the auxiliary spaceHi is just the operator of
multiplication by a real numberµ ∈ R,

Hi
def= µ ∗ .

Let us embed the operatorH in the spacêH as follows,

H → Ĥ = Hd × (Ic ⊕ Ii)+ Id × (Hc ⊕Hi) = (Hd × Ic + Id ×Hc)
⊕(Hd × Ii + Id ×Hi) =

(
H 0
0 Hd × Ii + Id ×Hi

)
(11)

whereIi stands for the identity operator inC. The diagonal structure of this operator means
that the embedding does not lead to any interaction between the Stark electron and the
impurity.

In order to ‘switch on’ the interaction one can add to the diagonal operator-valued matrix
(11) an off-diagonal self-adjoint operatorV :

ĤB = Ĥ + V V =
(

0 B

B+ 0

)
(12)

whereB is a bounded operator acting froml2 to H andB+ is its adjoint. ObviouslyĤB is
self-adjoint operator with the domain of̂H .

As we wish to have an additional interaction only with a single site (say, withn = 0),
the operatorB should vanish in the orthogonal complement to the linear spanL{χ} of the
vectorχ = (. . . ,0, 0, 1, 0, 0, . . .)T ∈ l2, (χn = δ0n), i.e.

B|l2	L{χ} = 0.

This gives us the form† of the operatorB:

B : f 7→ β〈f, χ〉l2χ̂ . (13)

Hereβ ∈ R is a coupling constant and̂χ = χ · ϕ(y) ∈ H. We consider here the interaction
which does not depend on the field variabley, so it is reasonable to suppose that the function
ϕ(y) ∈ L2[−π, π) is a constant,ϕ(y) ≡ 1, and

χ̂ = χ · 1(y) ∈ H.
The adjoint operator acts as

B+ : 9 7→ β〈9, χ̂〉Hχ. (14)

To study the spectral properties of the operatorĤB we consider the spectral problem

ĤB

(
9(y)

f

)
= z

(
9(y)

f

)
9 ∈ H, f ∈ l2 (15)

† One can consider impurities localized in any finite numberN of sites. This means that the operatorB should
have non-trivial components in anN -dimensional subspace of the spacel2, which makes the algebraic structure
of the result more complicated, but does not lead to any essentially new spectral phenomena.
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and eliminate the ‘impurity channel’ variable

f = −β〈9, χ̂〉H Rd(z − µ)χ
whereRd(z) = (Hd − z)−1. This leads to the effective equation

(H +W11(z)− z)9 = 0 (16)

in the spaceH with the energy-dependent interaction [17, 18]

W11(z)∗ = −BRd(z − µ)B+∗ = −β2〈∗, χ̂〉H〈Rd(z − µ)χ, χ〉l2χ̂ .
Using equation (16) one can write [17, 18] the Lippmann–Schwinger equation for the block
R̂11(z) = (H +W11(z)− z)−1 of the resolvent(ĤB − z)−1 = RB(z) = {R̂ij }2i,j=1:

R̂11(z) = R(z)− R(z)W11(z)R̂11(z). (17)

This equation has an exact solution

R̂11(z) = R(z)+ β2

Q(z)
〈R(z)∗, χ̂ , χ̂〉H〈Rd(z − µ)χ, χ〉l2 (18)

where the Krein determinantQ(z) [17, 18] is given by

Q(z) = 1− β2〈R(z)χ̂, χ̂〉H〈Rd(z − µ)χ, χ〉l2. (19)

Similarly, one can eliminate from equation (15) the variable

9(y) = −R(z)Bf = −β〈f, χ〉l2R(z)χ̂(y).
In this case one obtains the effective equation

(Hd + µ− z +W22(z))f = 0

with the energy-dependent interaction

W22(z)∗ = −B+R(z)B = −β2〈∗, χ〉l2〈R(z)χ̂, χ̂〉Hχ.
The correspondent Lippmann–Schwinger equation has again an exact solution

R̂22(z) = Rd(z − µ)+ β2

Q(z)
〈R(z)χ̂, χ̂〉H〈Rd(z − µ)∗, χ〉l2 Rd(z − µ)χ. (20)

The operatorsR̂11(z) and R̂22(z) are the diagonal elements of the resolvent of the
operatorĤB ,

(ĤB − z)−1 = R̂B(z) =
(
R̂11(z) R̂12(z)

R̂21(z) R̂22(z)

)
.

It remains to reconstruct the off-diagonal elementsR̂12(z) and R̂21(z). To this end let us
consider the Lippmann–Schwinger equation for the resolventR̂B(z) of the operatorĤB :

R̂B(z) = R̂(z)− R̂(z)V R̂B(z). (21)

Here

R̂(z) =
(
R(z) 0

0 Rd(z − µ)
)

is the resolvent of the operator̂H andV is the perturbation. On the basis of the Lippman–
Schwinger equation (21) the off-diagonal elements of the operator-valued matrixR̂B(z) are
easily expressed through the diagonal ones as follows:

R̂12(z) = −R(z)BR̂22(z) (22)

R̂21(z) = −Rd(z − µ)B+R̂11(z). (23)
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The analysis of the analytical structure of the constructed resolventR̂B(z) leads to the
following conclusions. The resolvent̂RB(z) is an analytic operator-valued function in the
upper (Imz > 0) and lower (Imz < 0) half-planes. It has a jump on the continuous
spectrum of the operator̂HB which coincides with the real axisR. Such analytic properties
are the direct consequence of the same analytic properties of the resolventR(z) and of the
fact that the poles of the resolventRd(z − µ), namely the pointszm = 2πεam + µ,
m ∈ Z, are cancelled in each matrix element of̂RB(z). This cancellation can be
easily checked on use of the explicit formulae (18), (20), (22), and (23) for the matrix
elements.

It should be noted that the resolvent̂R(z) of the unperturbed operator̂H besides
the jump on the real axis also has poles at the pointszm = λm + µ, m ∈ Z. So
the eigenvalues of the operator̂H are embedded into the continuous spectrum. Thus
we have shown that the adding of the impurity destroys these eigenvalues. In what
follows we show that under the perturbationV eigenvalues convert into an infinite set
of resonances.

We shall define resonances as the poles of the analytic continuation of the quadratic
form (see [21] and references therein)

τ(z) = 〈R̂B(z)u, v〉Ĥ. (24)

Here the vectors

u =
(
u1

u2

)
v =

(
v1

v2

)
are appropriate elements form the spaceĤ = H ⊕ l2 (u1, v1 ∈ H and u2, v2 ∈ l2) to be
specified later.

Let us denote aŝHA the subset of the spacêH consisting of elementsu whose
componentsu1(y) admit analytic continuation into the strip|Rey| < π . The spaceĤA
is dense inĤ. Indeed, sinceu1(y) ∈ L2(−π, π) × l2, one can take polynomials as a
dense subset inL2(−π, π) whose elements admit the above analytic continuation. Let us
introduce the notationλ±m = λm ± πεa. The following statement is valid.

Lemma 2. Let u, v ∈ ĤA. Then the formτ(z) admits meromorphic continuation from
above (below) to below (above) in any stripSm = {z : λ−m < Rez < λ+m} and its poles
coincide with the zeros of the correspondent continuation of the Krein’s determinantQ(z).

Proof. Let us rewrite the quadratic form (24) as follows:

τ(z) = 〈R11(z)u1+ R12(z)u2, v1〉H + 〈R21(z)u1+ R22(z)u2, v2〉l2. (25)

Since the proof for all terms in equation (25) is similar, we show only that〈R11(z)u1, v1〉H
admits analytic continuation into the stripλ−m < Rez < λ+m. Using equation (18) one obtains

〈R11(z)u1, v1〉H = 〈R(z)u1, v1〉H + β2

Q(z)
〈Rd(z − µ)χ, χ〉l2〈R(z)u1, χ̂〉H〈R(z)χ̂, v1〉H.

(26)

First let us show that the first term on the right-hand side of equation (26) admits analytic
continuation into the stripSm for anym. On use of equation (9) we have

〈R(z)u1, v1〉H =
∑
mnn′

Jn−m(2)Jn′−m(2)ϕnn
′

m (z) (27)
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where

ϕnn
′

m (z)
def=
∫ π

−π

(u1(y))n′ (v1(y))
∗
n

λm + εay − z dy. (28)

Since the functionϕnn
′

m (z) is given by the Cauchy-type integral, it is analytic on the complex
plane of variablez except the interval [λ−m, λ

+
m]. Let us introduce the following functions

on the stripλ−m < |Rez| < λ+m:

−ϕnn
′

m (z)
def=


ϕnn

′
m (z) Im z > 0

ϕnn
′

m (z)+ 2π i

εa
hnn′

(
z − λm
εa

)
Im z < 0

(29)

and

+ϕnn
′

m (z)
def=

ϕ
nn′
m (z)− 2π i

εa
hnn′

(
z − λm
εa

)
Im z > 0

ϕnn
′

m (z) Im z < 0

(30)

where

hnn′(z)
def= (u1(z))n′ (v1(z))

∗
n

is the analytic continuation of the Cauchy-type integral density (28) into the stripSm.
One can check that the functions±ϕnn

′
m (z) are analytic in the stripSm. To this end it is

enough to show that

±ϕnn
′

m (λ+ i0) = ±ϕnn′m (λ− i0)

for any λ ∈ R. This relation follows directly from the limit values of the Cauchy-type
integralϕnn

′
m (z) on the interval(λ−m, λ

+
m),

ϕnn
′

m (λ± i0) = ±π i

εa
hnn′

(
λ− λm
εa

)
+ PV

∫ π

−π

hnn′(y)

λm + εay − λdy. (31)

Thus the function−ϕnn
′

m (z) is the analytic continuation of the functionϕnn
′

m (z) from above
to below and the function+ϕnn

′
m (z) is the analytic continuation of the functionϕnn

′
m (z) from

below to above in the stripSm. Hence the form〈R(z)u1, v1〉H given by the series (27)
admits analytic continuation from above to below andvice versain each stripSm. From
equations (29)–(31) it follows that these continuations through the interval(λ−m, λ

+
m) have

the form

〈R(z)u1, v1〉∓H =
∑
lnn′

Jn−l(2)Jn′−l(2)ϕnn
′

l (z)± 2π i

εa

∑
nn′
Jn−m(2)Jn′−m(2)hnn′

(
z − λm
εa

)
.

(32)

These functions are analytic in the stripSm. They can also be considered as the fixed
branches of the functions given by the same formulae (27) and (28) on the complex plane
of variablez with two cuts along the rays(−∞, λ−m] and [λ+m,∞).

Let us consider now the second term in the right-hand side of equation (26). The analytic
continuation of the factors〈R(z)u1, χ̂〉H and〈R(z)χ̂, v1〉H is a consequence of the analytic
continuation proven above for the form〈R(z)u1, v1〉H. The factor〈Rd(z − µ)χ, χ〉l2 is a
meromorphic function with the poles at the pointsλm + µ. However, one can check that
these poles are cancelled by the same poles of the Krein determinantQ(z) (and its analytic
continuationsQ±(z) as well).
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The last factor to be considered is the Krein determinantQ(z). Using equations (9),
(19), (27) and (28) one can rewrite it as

Q(z) = 1− β
2

εa

( ∞∑
p=−∞

J 2
p (2)

λp − z + µ
)( ∞∑

p=−∞
J 2
p (2)ln

(
λ+p − z
λ−p − z

))
. (33)

Here the branch of the logarithm is chosen such that

ln

(
λ+p − z
λ−p − z

)∣∣∣∣
z=λ+i0

= iπ + ln

(
λ+p − λ
λ− λ−p

)
λ ∈ (λ−p , λ+p ). (34)

One can check that the analytic continuation of the functionQ(z) into the stripSm from
above (below) to below (above) is given by the functionQ−(z) (Q+(z)):

Q−m(z)
def=


Q(z) Im z > 0

Q(z)− 2π iβ2

εa
J 2
m(2)

∞∑
p=−∞

J 2
p (2)

λp − z + µ Im z < 0
(35)

Q+m(z)
def=

Q(z)+
2π iβ2

εa
J 2
m(2)

∞∑
p=−∞

J 2
p (2)

λp − z + µ Im z > 0

Q(z) Im z < 0.

(36)

Therefore the form〈R11(z)u1, v1〉H can be continued in each stripSm as a meromorphic
function and the only poles can be given by the zeros of the Krein determinant continuations
Q±(z).

The proof of the statement of lemma 2 for all other terms of the formτ(z) is similar.
This accomplishes the proof of the lemma. �

From the above proof one can see that if the functionsQ−m(z) andQ+m(z) have zeros
z−m and z+m in the half-stripsS−m = Sm ∩ {z : Im z < 0} and S+m = Sm ∩ {z : Im z > 0},
respectively. These points are resonances.

To analyse the localization of the resonances let us consider the weak coupling limit
β � 1.

The following statement is valid.

Theorem 1. The quadratic formτ(z) = 〈R̂B(z)u, v〉Ĥ for any u, v ∈ Ĥ is an analytic
function in upper (Imz > 0) and lower (Imz < 0) half-planes and has a jump on the real
axis. The meromorphic continuationsτ±m (z) of τ(z) into the stripSm have a set of poles
(resonances) in the upper and lower half-strips, respectively, which coincide with zeros of
continuationsQ±m(z) of the Krein determinantQ(z). In the weak-coupling limit (β � 1)
there is at least one pole ofτ+m (z) (τ−m (z)) in the lower (upper) half-strip for everym ∈ Z
given by

z±m =
β�1

λM(λm−µ) + µ−
β2

εa
J 2
M(λm−µ)(2)

∞∑
p=−∞

J 2
p (2) ln

∣∣∣∣λ+p − λM(λm−µ) − µλ−p − λM(λm−µ) − µ

∣∣∣∣
−3iπ

β2

εa
J 2
M(λm−µ)(2)J

2
m(2)+O(β4). (37)

Here the Bessel function subindexM(λm − µ) is given by the integer-valued function
M(λ) = [(λ/2πεa)+ (1/2)] and λ±m = πεa(2m± 1).
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Proof. Analyticity of the functionτ(z) in C\R is a straightforward consequence of the
analytic properties of the resolvent̂R(z) of the self-adjoint operator̂HB .

Lemma 2 implies that singularities of the continuationsτ±m (z) coincide with the zeros of
the continuationsQ±m(z) of Krein’s determinantQ(z). In the upper half-stripQ+m(z) = Q(z)
and has no zeros, while in the lower half-stripS−m due to equations (33) and (35) zeros of
Q+m(z) are given by the roots of the equation

β2

εa

∞∑
n=−∞

J 2
n (2)

λn − z + µ
( ∞∑
p=−∞

J 2
p (2) ln

(
λ+p − z
λ−p − z

)
+ 2iπJ 2

m(2)

)
= 1. (38)

Let us show that in the weak coupling limitβ � 1 at least one pole of the resolvent
(Hd − z + µ)−1 generates a root of equation (38) and, consequently, a pole ofτ+m (z) in
the lower half-plane (resonance). Consideringτ−m (z) one should just replace the lower
half-plane by the upper one andvice versa.

We assumeµ 6= n + 1/2, n ∈ Z, and choose the indexm′ ∈ Z such that
λm′ + µ ∈ (λ−m, λ+m). This means

m′ = M(λm − µ). (39)

Multiplying both sides of equation (38) by the factor(λm′ − z−µ) and using the expansion
in powers ofβ2 nearβ = 0 we find the root

z+m = λm′ + µ−
β2

εa
J 2
m′(2)

( ∞∑
p=−∞

J 2
p (2) ln

(
λ+p − λm′ − µ
λ−p − λm′ − µ

)
+ 2iπJ 2

m(2)

)
. (40)

The argument of the logarithm on the right side of equation (40) is negative iffλ−p − µ <
λm′ < λ+p − µ, i.e. whenp = M(λs(m) + µ). One use of equation (39) is that we find that
it implies p = m. Finally, using equations (34), (39), and (40) we get the resonance in the
lower half-plane given by equation (37). Calculations of the resonancesz−m in the upper
half-plane are obviously similar. The theorem is proved. �

4. Lee–Friedrichs representation

The HamiltonianĤ acts in the Hilbert spacêH which can be represented as the orthogonal
sumĤ = l2(Z, L2[−π, π))⊕ l2. In accordance with this representation let us introduce the
generalized Friedrichs states|ω〉 and |s〉 [16, 19, 22–24] as follows,

|ω〉 =
( |ω̃〉

0

)
where|ω̃〉 = Ĵ (M(ω))δ(y + 2πM(ω)− (ω/εa)

|s〉 =
(

0
|s̃〉
)

and |s̃〉 = Ĵ (s) = {Jn−s}n∈Z ∈ l2. Then one can check that the perturbed Hamiltonian̂HB
can be written in the Lee–Friedrichs representation

ĤB = 2πaε
∞∑

s=−∞
s|s〉〈s| +

∫ ∞
−∞

dωω|ω〉〈ω| +
∞∑

s=−∞

∫ ∞
−∞

dω vs(ω) (|ω〉〈s| + |s〉〈ω|) (41)

where the spectral densityvs(ω) reads as

vs(ω) = βJ−M(ω)(2)J−s(2) ω ∈ R.
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The representation (41) shows that our model can be effectively studied using methods
developed in various papers [16, 22, 23, 25–27] for the Friedrichs model. The main interest
in this model is related to consideration of resonance states associated with resonance
poles of the extended resolvent, their interpretation as decaying states and construction
of generalized spectral decomposition [19, 22–24, 28]. However, one should note that the
above constructed spectral densityvs(ω) cannot be analytically continued from the real axis
neither to the upper nor to the lower half-plane, thus we cannot directly use the technique
of generalized spectral decomposition elaborated in [28] for the Friedrichs model to the
discrete Stark Hamiltonian under consideration.

In conclusion let us note that the natural continuation of the present study would be
the construction of a generalized spectral decomposition for the extended discrete Stark
Hamiltonian in a rigged Hilbert space8± ⊂ Ĥ ⊂ 8

†
± and the proof of the weak

completeness here. On this basis one can split the unitary evolution group into two
semigroups and study the problem of intrinsic irreversibility. However, it seems that the
solution of these problems should be the subject of a separate paper.
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