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Abstract. A one-dimensional discrete Stark Hamiltonian with a continuous electric field is
constructed by extension theory methods. In the absence of an impurity the model is proved to
be exactly solvable, the spectrum is shown to be simple and continuous, filling the real axis;
the eigenfunctions, the resolvent and the spectral measure are constructed explicitly. For this
(unperturbed) system the resonance spectrum is shown to be empty.

The model considering an impurity in a single node is also constructed using the operator
extension theory methods. The spectral analysis is performed and the dispersion equation for
the resolvent singularities is obtained. The resonance spectrum is shown to contain an infinite
discrete set of resonances. One-to-one correspondence of the constructed Hamiltonian to some
Lee—Friedrichs model is established.

1. Introduction

A one-dimensional Stark-type Hamiltonian on a line has been studied by many authors
[1-12]. Most attention has been paid to the resonance structure of this system. The key
ingredient of the models studied in [1-12] is the absolutely continuous spectrum filling the
whole real axis. It provides the possibility of applying the powerful methods of scattering
theory to the study of the spectrum of resonances.

However, it is well known [13, 14] that a discrete one-dimensional Stark Hamiltonian
on a lattice has a discrete spectrum only. This means that there are no ‘scattering states’
even for an unperturbed system. This prevents the study of the spectrum of resonances
caused by the perturbation of an ideal crystal lattice.

In the present paper we study a model for the motion of an electron on a one-dimensional
lattice in a homogeneous electric field and electron resonance scattering by an impurity
treated as a perturbation. The main idea of our approach is to put the dynamical variables
and equation of motion on a spatial lattice, whereas the absolutely continuous spectrum is
kept intact.

In order to construct a discrete Stark Hamiltonian with an absolutely continuous
spectrum we treat the kinetic energy of an electron in a lattice as the operator of the
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second difference, whereas the electric field is considered as continuous, filling the intersite
intervals. As is shown in the present paper, the discrete Stark operator with continuous
electric field proposed here has an absolutely continuous spectrum in contrast to the discrete
Stark operator with electric field located at the sites of the lattice [13, 14]. In our opinion

the discrete Stark operator with continuous electric field seems to be more natural from the
physical point of view, at least because the concept of a field needs continuity by itself. On
the other hand, the suggested model seems also to be more sound from the spectral point of
view because of the presence of a continuous spectrum, and as a consequence the presence
of the propagating electronic waves in the system.

Treating such a Hamiltonian as an unperturbed operator, we construct the perturbed
Hamiltonian which describes the interaction of the Stark electron with an impurity.

In the present paper we consider the single impurity localized at the site with the number
n = 0. We ‘switch on’ the interaction between the Stark electron and the impurity by the
extension theory methods [17,18]. In contrast to the ordinary delta-like interaction our
approach allows one to take into account the impurity internal degrees of freedom. The
advantage is that the perturbed Stark operator describing the resonance scattering by impurity
leads to the exactly solvable model having at the same time a reach set of resonances. We
calculate the location of resonances by perturbation theory methods in a weak coupling
limit.

Let us emphasize that this paper does not consider the Wannier—Stark problem, because
in our model the kinetic energy operator is a difference operator.

We reduce the proposed model to some Lee—Friedrichs model [15, 16] and treat the latter
as a particular case of models based on the extension theory [17,18]. This reduction can
be useful when studying the transition to chaos and the problem of intrinsic irreversibility
[19] for discrete Stark Hamiltonians.

The paper is organized as follows. In section 2 we construct the discrete Stark
Hamiltonian with continuous electric field and perform its spectral analysis explicitly. In
section 3, by means of the extension theory methods, we construct the perturbed Hamiltonian
describing the interaction of the Stark electron with an impurity. In the same section
we make the analytic continuation of the resolvent bilinear form and in terms of this
continuation calculate the spectrum of resonances. In section 4 we reduce our model to
the Friedrichs—Lee model and discuss on this basis the applicability of the generalized
spectral decompositions, in connection with the intrinsic irreversibility problem and chaotic
regimes.

2. Unperturbed Hamiltonian

In this section we construct a Hamiltonian describing a chain of sites embedded in a
continuous electric field and study its spectral properties.
Let us consider the discrete Stark operatfyracting in the Hilbert spacet, = /2,

(HaW), = (V-1 + Wyi1) + 2meany, (1)

1
(2ra)?

and the multiplication operator
H. = eay y € (—m, ) @

acting in the Hilbert spac@(, = L?(—ma,na). Here 2Zra is the intersite distance and
¢ > 0 is the electric field parameter.
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We introduce the Hamiltonian describing a chain of sites in an electric field in the form
H=H;xI.+1; x H.. (3)

Here H, and H, are given by equations (1) and (2), respectivélyand I. are the identity
operators ir{, andH.. The notationx stands for the operator tensor product. The operator
H acts in the space

H = 12(Z; L[—m, ). 4)
One can note that the potential
U =2rasn x I, + 1; x eay = ea(Prn+y)

is a continuous electric field potential on a line. Indeed, any poinfR can be parametrized
by the site number € Z and the point of the interval € [—m, 7) : v = a(2rn 4+ y). SO

in contrast to the discrete Stark Hamiltoni&f), our model describes a chain of sites in a
continuous electric field.

In what follows we call the operatdil the unperturbed operator. The perturbation will
be introduced in the next section as the impurity located in one of the sites.

In order to describe spectral properties of the unperturbed opefatare need the
following notation. By angular bracketss, x) 4, we denote the inner product in a Hilbert
spaced and by square bracketsy][ the integer part of a real number The integer-valued
function M (1) is defined as

def[ A 1
M) = [ZME + 2] A eR.
J,(z) are the Bessel functions of first type. The components of the veltore 12 are
defined as follows:(7™), = J,_.(©), where® = —(473a3¢)~1. The Heaviside step
function is denoted by (x).

Lemma 1l The spectruna (H) of the operatoi is simple, absolutely continuous and fills
the real axisR. The wavefunctions are distributions and are given by

U (y, &) = Ju—m)(©)8(eay — A+ 2n M (M)ea). (5)

The spectral family (resolution of the identity) of the operakbrare projections in the
spaceH of the form
E,(y) = Z (6, T2 T™0 (0 — 2mea — eay). (6)

m=—0oQ

Proof. The structure of the operatdf leads to the separation of variables and therefore
the spectral analysis dfl is reduced to the spectral analysis of the operatyrand H..
Let us use the Fourier transform in the spé&geF : 12 — L?(—m, n):

oo

(Ff)g) = ) €9f,.

n=—0o0

In the Fourier representation the operatfy turns into the operator

.d 2
FH,F'=—2masi— — —— _co
dg (2na)?

acting in L?(—x, =) whose domain in the Sobolev spaig[—r, =) is determined by the
periodicity condition(Ff)(—m) = (Ff)(x). Solving the eigenvalue problem

(FHF~ =0 (Ff)(g@) =0

&)
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one can see that the spectrum of the oper&tal, F~* is discrete and the eigenvalues are
A = 2masm m=0,=+1, £2, ...

whereas the correspondent eigenfunctions are
(Ff)™(g) = expli® sing + imgq} 0 = —(4r3d®e) L.

Using the inverse Fourier transform one obtains

S =en™ | (FH™ @) e dg = Jyn(O).
-7
Here we have used the integral representation [29] of the Bessel funktian.

Now consider the operatoH, in the Hilbert spacelL?(—m, ). Its spectrum is
absolutely continuous and fills the internvak [—mea, wea]. The correspondent continuous
spectrum wavefunctions are distributions and have the form of delta functipf® =
8(y — (ea)™7).

Due to the separation of variables the spectrum of the operatisrthe algebraic sum
of the spectra of the operatofs; and H,:

ohy={z=z21+22:z21€ 0(Hy), 72 € 0 (H.)}.

Let us note that the length of the single spectral band of the opeHatexactly coincides
with the distance between the neighbouring eigenvalues of the opehtigtorThus the
spectrum of the operatdt fills the real axis.

Any point A € R from the spectrum off can be represented in the form

A=Xx,+v me€Z,v € —mae, was).

This representation corresponds to the energy distribution between the ‘lattice’ and ‘field’
subsystems determined by the operatéfs and H,, respectively. Asi,, = 2mwaem,
m=0,+1, 42, ..., the ‘mode numberin for a given energy. is calculated as an integer-
valued function

2ras = 2

Due to the separation of variables, the wavefunctiénéy) of the operatord are products
of the corresponding eigenfunctions of the operattisand H. and hence have the form
(5).

Now we construct the spectral familg, (y) of the operatordH and show that the
guadratic form

n) = (B, P, ®)u (7
is an absolutely continuous function ofor any® € H. First, let us show that the resolvent
R(z) = (H — z)~! is an operator-valued matriR(z) = {R, (z)} with the entries

= Jn—m(®) Jn’—m (®)
Run (v, 2) = Z Am +€ay — 2 ®)

A 1
m=M(k)=|: —l—:|.

m=—00

which acts as a multiplication operator with respect to the variabledeed, the resolvent
R, (2) = (Hy; — z)~* of the operatotH, in the spacd? obviously has matrix elements

- Jn—m C) Jn’—m C)
Ry = Y (I -n(©) ©

m=—00 Am =2
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where 1,, = 2wmea are the eigenvalues of the operatd;. The resolventR.(z) =
(H, — z)~* of the operatorH. in the spacd.?(—x, ) is a multiplication operator

R.(2)* = . (10)

eay —z

Due to separation of variables the resolv&it) = (H — zI)~! can be calculated as a
contour integral

R() = (2ni>—1§£ R(§)Ra(z — ) de

Y

_ <2ni)—1f Ra(z — OIR( +10) — Re(¢ — i0)]de

—eam

where the contouy encircles the spectrum of the operaf@r. On use of equations (9) and
(10) the straightforward calculations give

S S Jn—m(®)-’n’—m(®) 1 1
— 1 —
Rowt (v,2) = (271) /_em m;oo Am—2+¢ (8ay —¢—i0 eay—C¢+ iO) %«

N T §(eay = ¢) SN A ()W ()
= Z Jiem (©) Sy (O) )Lidg = Z
Mm=—00 —ear Am — 2+ { m=——o00 )Lm —Z+ gay

which coincides with equation (8).

Resolution of the identityE, of any self-adjoint operator is related to the resolvent as
follows [20]. If (¢, B) C R is an open interval, then in the strong operator topology

B8
Ep = lim lim R(A+i€) — R(x —i€))dh.
@p) =M €¢0/0,+3 (R(A +ie) ( €))

Applying this formula to the resolverR(z) given by equation (8) one obtains resolution of
the identity of the operatoH in the form (6).

By means of equation (6) the functiar{)) given by equation (7) takes the form

now) = Z/ (@, TP) 2 (TP, ®)2 (A — A, — eay) dy.
p=—o00 YT

It is clear that ifA € [A,, — wea, Ay, + weal, m € Z, then

m—1 T (A=Am)/ca
ny =y / (@, JP) (T, @) dy + / (@, T (T, ®)pe dy.

p=—00 -
Consequentlyn(i,, + rea — 0) = n(A,+1 — mwea + 0). Hence the functiom (i) and,
consequently, the spectrum of the operatris absolutely continuous.
The lemma is proved. O

3. Perturbed Hamiltonian

In this section we assume that the chain of sites considered embedded in the electric field has
an impurity. Namely we suppose that the electron dynamics governed by the Hamiltonian
H is perturbed by the additional interaction between the electron and an impurity located at
the single site with the number= 0. We construct this interaction by means of extension
theory methods [17,18]. Namely we suppose that the impurity has an internal structure.
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The dynamics of this internal structure is given by a self-adjoint operdtcacting in an
auxiliary Hilbert spaceH;. Then following the extension theory ideology we consider the
extended space

H =122, LA(~7n,m) @ H;)) = H B I1X(Z, Hy)
as the state space for the system with the interaction.

Here we make the simplest choig¢ = C. Then

H=HoI
and the self-adjoint operatall; acting in the auxiliary spac@{; is just the operator of
multiplication by a real numben € R,

Hi dzefﬂ*.

Let us embed the operatéf in the spacéq as follows,
H—>H=H;x(L®L) +1;x (H.®H)=(Hy x I, +1; x H)

H 0
@(HJXIi"‘IdXHi):(O deI-—i—IdxH‘) (11)

wherel; stands for the identity operator @. The diagonal structure of this operator means
that the embedding does not lead to any interaction between the Stark electron and the
impurity.

In order to ‘switch on’ the interaction one can add to the diagonal operator-valued matrix
(11) an off-diagonal self-adjoint operatdr:

Hy=H+V V:(BO+ g) (12)
where B is a bounded operator acting [[c%to ‘H and B is its adjoint. ObviouslyﬁB is
self-adjoint operator with the domain &f.

As we wish to have an additional interaction only with a single site (say, with0),
the operatorB should vanish in the orthogonal complement to the linear $piat} of the
vectory = (...,0,0,1,0,0,...)" €I, (xu = 80n), i.€.

B|129£{X} = 0
This gives us the formof the operatorB:

B: f Bf X)X, (13)
HereB € R is a coupling constant angd = x - ¢(y) € H. We consider here the interaction

which does not depend on the field variapleso it is reasonable to suppose that the function
¢(y) € L’[—m, ) is a constantp(y) = 1, and

xXx=x -1y eH.
The adjoint operator acts as

BY 1 W B, X)X (14)
To study the spectral properties of the opera%rwe consider the spectral problem
ﬁB(‘I’}”):z(‘I’;”) VeH fel (15)

1 One can consider impurities localized in any finite numiheof sites. This means that the opera®rshould
have non-trivial components in ad-dimensional subspace of the spdéewhich makes the algebraic structure
of the result more complicated, but does not lead to any essentially new spectral phenomena.
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and eliminate the ‘impurity channel’ variable
f==BY, ) Ra(z — )
whereR,(z) = (H; — z)~ L. This leads to the effective equation
(H+Wuiz)—2)¥=0 (16)
in the space with the energy-dependent interaction [17, 18]
Wi1(2)* = —BRy(z — W) B % = —B%(x, X)1(Ra(z — WX, X )1 X-

Using equation (16) one can write [17, 18] the Lippmann-Schwinger ¢ equatlon for the block
Ru1(z) = (H + Wi1(z) — )" of the resolventHp — 2)* = Rp(2) = (R;)? it

R11(2) = R(z) — R(2)W11(2) R11(2). (17)
This equation has an exact solution

- 2

R11(z) = R(z) + %(R(z)* X (Ra(z = X, X, (18)
where the Krein determinan®(z) [17, 18] is given by

0(z) =1 - BAR@X, X)m(Ra(z = WX X)iy- (19)

Similarly, one can eliminate from equation (15) the variable
V(y) = —R(@)Bf = —B{f. X), R X ().
In this case one obtains the effective equation
(Hi+pn—z+ W) f=0
with the energy-dependent interaction
Wao(2)x = =BYR(2)B = —B%(x, X)i, (RQ@)X, X)X
The correspondent Lippmann—Schwinger equation has again an exact solution
132
0(2)
The (lperatorsﬁll(z) and ﬁzz(z) are the diagonal elements of the resolvent of the
operatorHp,

Raa(z) = Ra(z — ) + (R(2)Xs X)1(Ra(z — )%, x )2 Ra(z — 1) x. (20)

S 1% . En(z) §12(Z)
(Hp —2) ‘RB(Z)‘<R21<z> Rzz<z>)'

It remains to reconstruct the off-diagonal eIemeRt@(z) and R21(z) To this end let us
consider the Lippmann—Schwinger equation for the resolRait) of the operatorHB

Rs(2) = R2) — R@)VRs(2). 1)

= . (R 0
R(Z)_( 0 Rd(Z_M)>

is the resolvent of the operatds? andV is the perturbation. On the basis of the Lippman—
Schwinger equation (21) the off-diagonal elements of the operator-valued rRatti} are
easily expressed through the diagonal ones as follows:
Ri5(z) = —R(2) BR22() (22)
R21(z) = —Ry(z — w) BT R11(2). (23)

Here
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The analysis of the analytical structure of the constructed resoRg() leads to the
following conclusions. The resolveg(z) is an analytic operator-valued function in the
upper (Imz > 0) and lower (Inx < 0) half-planes. It has a jump on the continuous
spectrum of the operatdiz which coincides with the real axi®. Such analytic properties
are the direct consequence of the same analytic properties of the resBlv¢rand of the
fact that the poles of the resolve®,(z — w), namely the point,, = 27ream + u,

m € 7, are cancelled in each matrix element ﬁﬁ(z). This cancellation can be
easily checked on use of the explicit formulae (18), (20), (22), and (23) for the matrix
elements. R R

It should be noted that the resolveRi(z) of the unperturbed operatail besides
the jump on the real axis also has poles at the poipts= A, + u, m € Z. So
the eigenvalues of the operatai? are embedded into the continuous spectrum. Thus
we have shown that the adding of the impurity destroys these eigenvalues. In what
follows we show that under the perturbatidh eigenvalues convert into an infinite set
of resonances.

We shall define resonances as the poles of the analytic continuation of the quadratic
form (see [21] and references therein)

(2) = (Rp(2)u, v) - (24)

Here the vectors

are appropriate elements form the sp&ACez H® 1% (uy, v1 € H anduy, v, € 1) to be
specified later. R _

Let us denote as{, the subset of the spacH consisting of elements whose
components:; (y) admit analytic continuation into the strifiRey| < 7. The spaceH,
is dense inH. Indeed, sincai1(y) € La(—m, ) x I?, one can take polynomials as a
dense subset i, (—7m, 7) whose elements admit the above analytic continuation. Let us
introduce the notation® = 1,, + wea. The following statement is valid.

Lemma 2 Letu,v € ﬁA. Then the formz(z) admits meromorphic continuation from
above (below) to below (above) in any strfp, = {z : &, < Rez < A}} and its poles
coincide with the zeros of the correspondent continuation of the Krein's determinaint

Proof. Let us rewrite the quadratic form (24) as follows:
7(2) = (R1a(2)ur + R12(2)uz, vi)n + (R2a(2)us + Roa(2)uz, v2)e. (25)
Since the proof for all terms in equation (25) is similar, we show only {Rat(z)u1, v1)x

admits analytic continuation into the stiify < Rez < A/. Using equation (18) one obtains

2

(R11(2)uz, vi)n = (R(Qu1, vi)n + %(Rd(z — WX, X)e{R@u1, X)n(R@)X, vi)nu.
(26)

First let us show that the first term on the right-hand side of equation (26) admits analytic
continuation into the strif$,, for anym. On use of equation (9) we have

(R@u1, v1)n = Y Jn-m(©) (@)@ (2) (27)

mnn’
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where

def [T (1 (y)),y (v1()), dy

nn = 28
o' (2) = T teay 2 (28)

Since the functio!” (z) is given by the Cauchy-type integral, it is analytic on the complex
plane of variablez except the intervalX,, A}]. Let us introduce the following functions
on the stripr,, < |Rez| < A}:

ot oM (2) Imz >0
() E , 27 ~ A 29
(len (Z) + lhnn’ (Z > |mZ < 0 ( )
ea ea
and
, 27T| Z— )Wn
, 7 (Z) — — h ( > Imz >0
o) &Y ea ea (30)
(P,’;n/(Z) Imz <0
where

han (@) E 120 (01.2);

is the analytic continuation of the Cauchy-type integral density (28) into the $frip
One can check that the functloﬁs)”" (z) are analytic in the stris,,. To this end it is
enough to show that

+ nn ()\ + IO) nn’(k _ IO)
for any A € R. This relation foIIows directly from the limit values of the Cauchy-type
|ntegral<p”" (z) on the interval(x

m? m

! . I A— )\m 4 hn !
gpr"n” (A £1i0) = :l:n—h,m« + PV/ ﬂdy. (32)
ea ea g Am FEay — A

Thus the functiom ¢ (z) is the analytic continuation of the functiagf” (z) from above
to below and the functiorig’” '(z) is the analytic continuation of the functiaei” "(z) from
below to above in the strig,,. Hence the form{R(z)u1, v1)y given by the series (27)
admits analytic continuation from above to below ance versain each stripS,,. From
equations (29)—(31) it follows that these continuations through the int¢kyalr ) have
the form

— A
(R@)us, v = D St (@) I 1(@)g" (2) £ °_ Z A (C) N AR ()Y ( o ) :

Inn’'

(32)

These functions are analytic in the strffp. They can also be considered as the fixed
branches of the functions given by the same formulae (27) and (28) on the complex plane
of variablez with two cuts along the rayé6-oo, 1,,] and A}, 0o

Let us consider now the second term in the right-hand 5|de of equation (26). The analytic
continuation of the factoréR(z)u1, x)» and(R(z)¥, v1)x is a consequence of the analytic
continuation proven above for the fort®R(z)ui, v1). The factor(R;(z — w)x, x);z is a
meromorphic function with the poles at the points + 1. However, one can check that
these poles are cancelled by the same poles of the Krein detern@iianfand its analytic
continuationsQ*(z) as well).
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The last factor to be considered is the Krein determin@ft). Using equations (9),
(19), (27) and (28) one can rewrite it as

B _,32 o0 J2(©) o0 M=z
0@) =1 w( > A—z+u)< > JA©)n (A _Z>>. (33)

p=—o0 7P p=—00 14

Here the branch of the logarithm is chosen such that

| (A;_Z> i 41 (A;_k) re oAb, (34)
n =im +1In e (A,

)‘; — 2/ lz=a+i0 A= )‘; P p
One can check that the analytic continuation of the funciibi) into the strip§,, from
above (below) to below (above) is given by the functi@n(z) (0" (z)):

0(2) Imz >0
def . 00 2
GO ) T i $EO o O
p=—00
Zm,B J2(©)
Q+(Z) def Q( ) + m(O) p;oo A i+ 0 ImZ >0 (36)
0(2) Imz < 0.

Therefore the form{R11(z)u1, v1)2 can be continued in each strf), as a meromorphic
function and the only poles can be given by the zeros of the Krein determinant continuations
0*(2).

The proof of the statement of lemma 2 for all other terms of the fe(n) is similar.

This accomplishes the proof of the lemma. d

From the above proof one can see that if the functiongz) and Q' (z) have zeros
z,, andz} in the half-stripsS, = S,, N {z : Imz < 0} andS} = S, N{z : Imz > 0},
respectively. These points are resonances.

To analyse the localization of the resonances let us consider the weak coupling limit
B <L

The following statement is valid.

Theorem 1 The quadratic forme(z) = (ﬁg(z)u, v)z; for anyu,v e H is an analytic
function in upper (Iny > 0) and lower (Iny < 0) half-planes and has a jump on the real
axis. The meromorphic continuationg (z) of z(z) into the stripS,, have a set of poles
(resonances) in the upper and lower half-strips, respectively, which coincide with zeros of
continuationsQ=(z) of the Krein determinanQ(z). In the weak-coupling limit § <« 1)

there is at least one pole of (z) (z,,(z)) in the lower (upper) half-strip for eveny € Z

given by

A = A, — 1
Ap = AMGy—p) — I

B
Ziﬁ« MG F = JM(AW—m(O) Z J2(©)In
p_

—3|7r'3 TG0, (@) TZ(©) + O(BY). (37)

Here the Bessel function subinded (1,, — 1) is given by the integer-valued function
M) =[(A/2rea) + (1/2)] and A = wea(2m £ 1).
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Proof. ~Analyticity of the functionz(z) in C\R is a straightforward consequence of the
analytic properties of the resolveRl(z) of the self-adjoint operatoHB

Lemma 2 implies that singularities of the continuatiaffgz) coincide with the zeros of
the continuation®(z) of Krein’s determinanQ(z). In the upper half-stri@;" (z) = Q(z)
and has no zeros, while in the lower half-stp due to equations (33) and (35) zeros of
Q" (z) are given by the roots of the equation

B JAHO) (X M =2\ Lo 200
- A_HM( 3 Jp(®)ln<k__z)+2lﬂJm(®)) ~1 (39)

n=-—00 p=—00 P

Let us show that in the weak coupling limit <« 1 at least one pole of the resolvent
(H; — z + )™t generates a root of equation (38) and, consequently, a potg @f in
the lower half-plane (resonance). ConsideriJg(z) one should just replace the lower
half-plane by the upper one awite versa

We assumeun # n + 1/2, n € Z, and choose the indexi’ € Z such that
Am + 1 € (A, A5). This means

m' =M, — 1. (39)

Multiplying both sides of equation (38) by the fact@r,, — z — ©) and using the expansion
in powers of? nearp = 0 we find the root

B

+
4= +,LL—J2(O)<

AT — }‘m/ - M . 2
PRGN (_) + 2me(®)>. (40)
Pt A At — WU
The argument of the logarithm on the right side of equation (40) is negativeg if u <
Ay < k; — u, i.e. whenp = M (A + ). One use of equation (39) is that we find that
it implies p = m. Finally, using equations (34), (39), and (40) we get the resonance in the
lower half-plane given by equation (37). Calculations of the resonagjpea the upper
half-plane are obviously similar. The theorem is proved. O

4. Lee—Friedrichs representation

The HamlltomanH acts in the Hilbert spac’d which can be represented as the orthogonal
sumH = 12(Z, LY —x, 7)) ®12. In accordance with this representation let us introduce the
generalized Friedrichs stat@s) and|s) [16, 19, 22—-24] as follows,

o =(19)

where|@) = TM©)§(y + 27 M(w) — (w/ea)

= <|g>>

and|s) = J® = {Ju—sInez € I?. Then one can check that the perturbed Hamiltorﬂ/&
can be written in the Lee—Friedrichs representation

o0

o=2ae Y. syl + [ dooloiol + Zf dor v, (@) (1) (5] + 1) @) (41)

where the spectral density(w) reads as
vy (0) = BJ_m(w) (O©)J(O) o€ R.
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The representation (41) shows that our model can be effectively studied using methods
developed in various papers [16, 22, 23, 25-27] for the Friedrichs model. The main interest
in this model is related to consideration of resonance states associated with resonance
poles of the extended resolvent, their interpretation as decaying states and construction
of generalized spectral decomposition [19, 22-24, 28]. However, one should note that the
above constructed spectral densityw) cannot be analytically continued from the real axis
neither to the upper nor to the lower half-plane, thus we cannot directly use the technique
of generalized spectral decomposition elaborated in [28] for the Friedrichs model to the
discrete Stark Hamiltonian under consideration.

In conclusion let us note that the natural continuation of the present study would be
the construction of a generalized spectral decomposition for the extended discrete Stark
Hamiltonian in a rigged Hilbert spacé. C H C cbl and the proof of the weak
completeness here. On this basis one can split the unitary evolution group into two
semigroups and study the problem of intrinsic irreversibility. However, it seems that the
solution of these problems should be the subject of a separate paper.
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